"Integration by Substitution" (also called "u-substitution") is a method to find an integral, but only when it can be set up in a special way.
The first and most vital step is to be able to write our integral in this form:
Note that we have g(x) and its derivative g'(x)
Like in this example:
Here f=cos, and we have g=x2 and its derivative of 2x
This integral is good to go!
When our integral is set up like that, we can do this substitution:
Then we can integrate f(u), and finish by putting g(x) back as u.
Like this:
So ∫cos(x2) 2x dx = sin(x2) + C worked out really nicely! (Well, I knew it would.)
This method only works on some integrals of course, and it may need rearranging:
Now we are ready for a slightly harder example:
And how about this one:
So there you have it.
In Summary
When we can put an integral in this form:
Then we can make u=g(x) and integrate ∫f(u) du
And finish up by re-inserting g(x) where u is.